Main Article Content

Abstract

The quality of agricultural products is demanded to be more optimal in the midst of an increasingly competitive economic development where this is determined by the internal and external quality of these products. Several conventional methods for detecting internal and external qualities have their respective drawbacks. One of the methods to detect the internal and external quality of agricultural products is the near infrared spectroscopy method. With advances in technology such as MEMS-based nanoimprint lithography, compact and microcontrollers, 3d printing, and wireless technology, it is possible to realize portable detection systems. Along with the development of technology, electronic components have also experienced miniaturization, the size of the spectroscopic device has also become smaller. Development and sale of several handheld spectrometers, which include becoming smaller, lighter, and cheaper, such as the use of a single array detector for the development of low cost near infrared handhelds for various agricultural commodities

Keywords

Low cost Handheld Non destructive Low cost Near infra red Agriculture Product

Article Details

References

  1. Aggarwal, S., Mohite, A.M., Sharma, N., 2018. The maturity and ripeness phenomenon with regard to the physiology of fruits and vegetables: a review. Bull. Transilv. Univ. Brasov, Ser. II For. Wood Ind. Agric. Food Eng. 11, 77–88.
  2. Ali, M.M.; Hashim, N.; Hamid, A.S.A. Combination of laser-light backscattering imaging and computer vision for rapid determination of oil palm fresh fruit bunches maturity. Comput. Electron. Agric. 2020, 169, 105235.
  3. Arboleda, ER, Parazzo KM, Pareja CM. 2020. Watermelon ripeness detector using near infrared spectroscopy. Jurnal Teknologi dan Sistem Komputer, 8 (4), 317-322. DOI:10.14710/jtsiskom.2020.13744.
  4. Ahie A, Lei H, Han B, Xiong M, Yan H. 2021. Fast Determination of three components in milk thistle Extract with a hand-held NIR spectrometer and chemometrics tools. J infrared Physics & Technology 113(2021) 103629. https://doi.org/10.1016/j.infrared.2021.103629
  5. Aykas, D.P., Ball, C., Menevseoglu, A., Rodriguez-Saona, L.E., 2020. In situ monitoring of sugar content in breakfast cereals using a novel FT-NIR spectrometer. Appl. Sci. 10, 8774. https://doi.org/10.3390/app10248774.
  6. Azahari DH, Sinuraya JF, Rachmawati RR. 2020. Daya Tahan Sawit Indonesia pada Era
  7. Pandemi COVID-19. (3):61–81.
  8. Barnaba, F.E., Bellincontro, A., Mencarelli, F., 2014. Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality. J. Sci. Food Agric. 94, 1071–1077. https://doi.org/ 10.1002/jsfa.6391.
  9. Bertinetto, CG, Schoot M, Dingemans M, Meeuwsen W, Buydens LMC, Jansen JJ. 2022. Influence of measurement procedure on the use of a handheld NIR spectrophotometer. Food Research International 161. https://doi.org/10.1016/j.foodres.2022.111836.
  10. Brito A.L.B, Santos A.V.P., Milanez K.D.T.M., Pontes M.J.C., Pontes L.F.B.L. 2017 Calibration transfer of flour NIR spectra between benchtop and portable instruments, Analytical Methods 9 (2017) 3184e3190.
  11. Budiastra IW, Ikeda Y, Nishizu T. 1998. Optical methods for quality evaluation of fruit (Part 2) Prediction of Individual Sugars and Malic Acid Concentrations of Apple and Mangoes by Developed NIR Reflectance System. Journal of JSAM. 60(3): 117-127
  12. Burn DA, Ciurczak EW. 2008. Handbook of near Infrared analisys. CRC press. Taylor and Francis Group.
  13. Chadwick D.T., McDonnell K.P., Brennan L.P., Fagan C.C., Everard C.D.,. 2014. Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: a review, Renew. Sustain. Energy Rev. 30 (2014) 672e681.
  14. C.C. Allain, L.S. Poon, C.S.G. Chan, Enzymatic determination of total serum cholesterol, Clin. Chem. 20 (4) (1974) 470–475.
  15. Chen, H., Lin, B., Cai, K., Chen, A., Hong, S., 2021. Quantitative analysis of organic acids in pomelo fruit using FT-NIR spectroscopy coupled with network kernel PLS regression. Infrared Phys. Technol. 112, 103582 https://doi.org/10.1016/j. infrared.2020.103582.
  16. Ciaccheri, L.; Adinolfi, B.; Mencaglia, A.A.; Mignani, A.G. Bluetooth-Connected Pocket Spectrometer and Chemometrics for Olive Oil Applications. Foods 2022, 11, 2265. https://doi.org/10.3390/ foods11152265
  17. Das, A,J.,, Wahi, A.,Khotari,I.Raskar, R. 2016 . Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness. Scientific Reports | 6:32504 | DOI: 10.1038/srep32504.
  18. Deidda, R., Sacre, P.-Y., Clavaud, M., Coïc, L., Avohou, H., Hubert, P., & Ziemons, E. (2019). Vibrational spectroscopy in analysis of pharmaceuticals: Critical review of innovative portable and handheld NIR and Raman spectrophotometers. TrAC Trends in Analytical Chemistry. doi:10.1016/j.trac.2019.02.035
  19. Delgado B. de la Roza-, A. Garrido-Varo, A. Soldado, A.G. Arrojo, M.C. Valdes, F. Maroto, D. Perez-Marin.2017. Matching portable NIRS instruments for in situ monitoring indicators of milk composition, Food Contr. 76 (74) (2017) 81
  20. Eady, M., Payne, M., Sortijas, S., Bethea, E., & Jenkins, D. (2021). A low-cost and portable near-infrared spectrometer using open-source multivariate data analysis software for rapid discriminatory quality assessment of medroxyprogesterone acetate injectables. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 259, 119917. doi:10.1016/j.saa.2021.119917
  21. Eady, M., Payne, M., Changpim, C., Jinnah, M., Sortijas, S., Jenkin, D. 2022. Establishment of instrument operation qualification and routine performance qualification procedures for handheld near-infrared spectrometers used at different locations within a laboratory network. J Spectrochimica Acta Part a: Molecular and Biomolekular Spectroscopy 267 (2022) 120512. https://doi.org/10.1016/j.saa.2021.120512
  22. Goh, J.Q.; Mohamed Shariff, A.R.; Mat Nawi, N. Application of Optical Spectrometer to Determine Maturity Level of Oil Palm Fresh Fruit Bunches Based on Analysis of the Front Equatorial, Front Basil, Back Equatorial, Back Basil and Apical Parts of the Oil Palm Bunches. Agriculture 2021, 11, 1179. https://doi.org/10.3390/ agriculture11121179 Academic Editor: Mac.
  23. Heydarov, S., aydin, M., Faydaci,C., Tuna, S., Ozturk, S. 2023. Low-cost VIS/NIR range hand-held and portable photospectrometer and evaluation of machine learning algorithms for classification performance. J Engineering Science and Technology, 37 (2023) 101302. https://doi.org/10.1016/j.jestch.2022.101302.
  24. Hu C.Q., Feng Y.C., Yin L.H. 2015 Review of the characteristics and prospects of near infrared spectroscopy for rapid drug-screening systems in China, J. Near Infrared Spectrosc. 23 (2015) 271e283.
  25. J.-A. Jeong, Y.-S. Park, H.-K. Kim, Comparison of electrical, optical, structural, and interface properties of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics, J. Appl. Phys. 107 (2) (2010), https://doi.org/10.1063/1.3294605.
  26. Jagustyn B, Patyna I, Skawińska A (2013) Evaluation of physicochemical properties of Palm Kernel Shell as agro biomass used in the energy industry. Chemik 67: 552–559.
  27. Jamil, N., Mohamed, A., Adbullah, S., 2009. Automated grading of palm oil fresh fruit bunches (FFB) using neuro-fuzzy technique. In: Proceedings of 2009 IEEE International Conference of Soft Computing and Pattern Recognition, Malacca, Malaysia, pp. 245–249.
  28. Kasim, N.F.M., Mishra, P., Schouten, R.E., Woltering, E.J., Boer, M.P., 2021. Assessing firmness in mango comparing broadband and miniature spectrophotometers. Infrared Phys. Technol. 115, 103733 https://doi.org/10.1016/j. infrared.2021.103733.
  29. MacArthur, R. L., Teye, E., & Darkwa, S. (2020). Predicting adulteration of Palm oil with Sudan IV dye using shortwave handheld spectroscopy and comparative analysis of models. Vibrational Spectroscopy, 103129. doi:10.1016/j.vibspec.2020.103129.
  30. Magama, P.,Chiyanzu, I., Mulopo, J. 2022. A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery. Journal Biosresource Technology . https://doi,org/10.1016/j.biteb.2022.101031
  31. Malegori, C., Nascimento Marques, E.J., de Freitas, S.T., Pimentel, M.F., Pasquini, C., Casiraghi, E., 2017. Comparing the analytical performances of Micro-NIR and FT- NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 165, 112–116. https://doi.org/10.1016/j. talanta.2016.12.035.
  32. Masithoh, R.E., Pahlawan, M.F.R., Wati, R.K., 2021. Non-destructive determination of SSC and pH of banana using a modular vis/NIR spectroscopy: comparison of partial least square (PLS) and principle component regression (PCR). IOP Conf. Ser. Earth Environ. Sci. 752 https://doi.org/10.1088/1755-1315/752/1/012047.
  33. Minas, I.S., Blanco-Cipollone, F., Sterle, D., 2021. Accurate non-destructive prediction of peach fruit internal quality and physiological maturity with a single scan using near infrared spectroscopy. Food Chem. 335, 127626 https://doi.org/10.1016/j. foodchem.2020.127626.
  34. Misron, N.; Azhar, N.S.K.; Hamidon, M.N.; Aris, I.; Tashiro, K.; Nagata, H. Fruit battery with charging concept for oil palm maturity sensor. Sensors 2020, 20, 226.
  35. Mugianto F,Edyson, Ardiyanto A, Putra S K, Prabowo L. 2021. Potential content of palm oil at various levels of loose fruit in oil palm circle. Jurnal Agro Industri Perkebunan . Vol 9 (2) 91-98. https://doi.org/10.25181/jaip.v9i2.2161.
  36. Munawar AA. 2014. Multivariate Analysis and Artificial Neural Network Approaches of Near Infrared Spectroscopic Data for Non-Destructive Quality Attributes Prediction of Mango [Disertasi]. Goettingen: Georg-August University.
  37. Murai I, Wiliams PC. 1990. Chemical principles of near Infrared Technology. Di dalam : Wiliam P, Norriss K, editor. Near infrared technology in agricultural and food industries. St. Paul, MN: American Association of cereal Chemists inc. hlm 17-34
  38. Nicolaï, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I., Lammertyn, J., 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46, 99–118. https://doi.org/ 10.1016/j.postharvbio.2007.06.024.
  39. Noh, S.H., & Choi, K. (2005). Nondestructive Quality Evaluation Technology for Fruits and Vegetables Using Near-Infrared Spectroscopy.
  40. Novianty, I, Seminar, K.B.,Irzaman, Budiastra, I, W. 2020. Improving the accuracy of near -infrared (NIR) spectroscopy method to predict the oil content of oil palm fresh fruits. IOP Conference Series: Earth and Environmental Science. doi:10.1088/1755-1315/460/1/012004.
  41. Novianty I, Baskoro R. G, Nurulhaq M I, Nanda MA. 2022. Empirical mode decomposition of near-infrared spectroscopy signals for predicting oil content in palm fruits, Information Processing in Agriculture, https://doi.org/10.1016/j.inpa.2022.02.004
  42. Kaufmann, K, C., Favero, F, d F,.Vasconcelos,M, A, M, Godoy, H,T, Sampaio, K, A, Barbin, D, F. 2019. Portable NIR Spectrometer for Prediction of Palm Oil Acidity. Journal of Food Science. Vol 00, Iss 0 : 1-6. doi: 10.1111/1750-3841.14467.
  43. Kasemsumran, S, Thanapase, W, Punsuvon, V, Ozaki Y. 2012. A Feasibility study on non-destructive determination of oil content in palm fruits by visible -near infrared spectroscopy. Journal of Near Infrared Spectroscopy. Vol 20:687-694.
  44. Kusumiyati, Mubarok, S., Sutari, W., Hadiwijaya, Y., 2021. Application of spectra pre-treatments on firmness assessment of intact sapodilla using vis-nir spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 644 https://doi.org/10.1088/1755-1315/644/1/ 012001.
  45. Laganovska, K., Zolotarjovs, A., Vázquez, M., Mc Donnell, K., Liepins, J., Ben-Yoav, H., … Smits, K. (2020). Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements. HardwareX, 7, e00108. doi:10.1016/j.ohx.2020.e00108.
  46. Li, J., Zhang, H., Zhan, B., Zhang, Y., Li, R., Li, J., 2020. Nondestructive firmness measurement of the multiple cultivars of pears by Vis-NIR spectroscopy coupled with multivariate calibration analysis and MC-UVE-SPA method. Infrared Phys. Technol. 104, 103154 https://doi.org/10.1016/j.infrared.2019.103154.
  47. Pampuri, A., Tugnolo, A., Giovenzana, V., Casson, A., Guidetti, R., Beghi, R., 2021. Design of cost-effective LED based prototypes for the evaluation of grape (Vitis vinifera L.) ripeness. Comput. Electron. Agric. 189, 106381 https://doi.org/ 10.1016/j.compag.2021.106381.
  48. Pissard, A., Marques, E.J.N., Dardenne, P., Lateur, M., Pasquini, C., Pimentel, M.F., Fernandez ´ Pierna, J.A., Baeten, V., 2021. Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality. Postharvest Biol. Technol. 172 https://doi.org/10.1016/j.postharvbio.2020.111375.
  49. Rahayu, Sekar Wiji, and Fajar Sugianto. 2020. Implikasi Kebijakan dan Diskriminasi Pelarangan Ekspor Dan Impor Minyak Kelapa Sawit Dan Bijih Nikel Terhadap Perekonomian Indonesia. DiH: Jurnal Ilmu Hukum 16(2): 224-36.
  50. Rahim, H, A., Rani, S, N, N, A. 2013.Classification of Fatty Fat Acid in Palm Oil Using Near Infrared Spectroscopy. Jurnal Sensors & Tranducers Vol 156(9); 247-250.
  51. Okoye, M.N., Okwuagwu, C.O., & Ugurui, M.I. (2009). Population improvement for fresh fruit
  52. bunch yield and yield components in oil palm (Elaeis guineensis Jacq). Am-Eurasian. J. Sci.
  53. Res., 4(2), 59–63.
  54. Pratinda, W.N.A.S., Harta, R. 2021. Analisis Kinerja Ekspor Subsektor Perkebunan dan Pandemi Covid-19. Jurnal Ekonomi dan Kebijakan Pembangunan. Vol 10 (2): 114-133. https://doi.org/10.29244/jekp.10.2.2021.114-133.
  55. Pissard A, Baeten V, Romnee, Jean M, Dupont P, Mouteau A, Lateur M. 2012. Classical and NIR Measurements of the quality and nutritional parameters of apples: a methodological study of intra-fruit variability. Biotechnol Agron Soc Environ 16: 294-306.
  56. Razali, M., Somad, A., Halim, A., & Roslan, S. (2012). A review on crop plant production and ripeness forecasting. Int. J. Agric. Crop. Sci., 4(2), 54–63.
  57. Rios, AF.,Laso L., Aldaco, R.,Margallo, M., 2022. Superfood, asuper impact on health and environment?. Current Opinion in Environmental Science & Health. https:// doi.org/10.1016/j.coesh.2022.100410.
  58. Shaarani, S.Md., Cárdenas-Blanco, A., Amin, M.H.G., Soon, N.G., Hall, L.D., 2010. Monitoring development and ripeness of oil palm fruit (Elaeis guneensis) by MRI and bulk NMR. International Journal of Agriculture and Biology 12, 101–105.
  59. Saeed, O. M. B., Sankaran, S., Shariff, A. R. M., Shafri, H. Z. M., Ehsani, R., Alfatni, M. S., & Hazir, M. H. M. (2012). Classification of oil palm fresh fruit bunches based on their maturity using portable four-band sensor system. Journal Computers and Electronics in Agriculture, 82, 55–60. doi:10.1016/j.compag.2011.12.010.
  60. Saleh G, Alkaabi F, Al-Hajhouj N, Towailib F, Al Hamza S. 2018. Design og non -invasive glucose meter using near-infrared technique. Journal of Medical Engineering & Technology. https://doi.org/10.1080/03091902.2018.1439114.
  61. Setiawan, A.W.; Mengko, R.; Putri, A.P.H.; Danudirdjo, D.; Ananda, A.R. Classification of palm oil fresh fruit bunch using multiband optical sensors. Int. J. Electr. Comput. Eng. 2019, 9, 2386–2393.
  62. Silva N.C. da, C.J. Cavalcanti, F.A. Honorato, J.M. Amigo, M.F. Pimentel. 2017. Standardization from a benchtop to a handheld NIR spectrometer using mathematically mixed NIR spectra to determine fuel quality parameters, Anal. Chim. Acta 954 (2017) 32e42.
  63. Sohaib Ali Shah, S., Zeb, A., Shahid, W., Arslan, M., Ullah Malik, A., Alanazi, E., & Asmary, W. 2020. Towards Fruit Maturity Estimation Using NIR Spectroscopy. Infrared Physics & Technology, 103479. doi:10.1016/j.infrared.2020.1034
  64. Sulistyo, BS, Sudarmaji A, Margiwiyatno A, Masrukhi, Mustofa A, Ediati R, Listanti R, Hidayat HH. 2021. Portable Near Infrared Spectrometer with Sensor AS7263 for Non-Destructive Estimation of Chemical Properties of Siamese Citrus (Citrus nobilis). Jurnal Teknologi Pertanian Vol (2): 81-88.
  65. Wang, H., Peng, J., Xie, C., Bao, Y., & He, Y. (2015). Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors, 15(5), 11889–11927. doi:10.3390/s150511889
  66. Walsh, K.B., Guthrie, J.A., Burney, J.W., 2000. Application of commercially available.
  67. Walsh, K.B., McGlone, V.A., Han, D.H., 2020. The uses of near infra-red spectroscopy in postharvest decision support: a review. Postharvest Biol. Technol. 163, 111139 https://doi.org/10.1016/j.postharvbio.2020.111139.
  68. Wang, T., Chen, J., Fan, Y., Qiu, Z., & He, Y. (2018). SeeFruits: Design and evaluation of a cloud-based ultra-portable NIRS system for sweet cherry quality detection. Journal Computers and Electronics in Agriculture, 152, 302–313. doi:10.1016/j.compag.2018.07.017 10.1016/j.compag.2018.07.017
  69. Wei, X., Liu, F., Qiu, Z., Shao, Y., & He, Y. (2014). Ripeness Classification of Astringent Persimmon Using Hyperspectral Imaging Technique. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-013-1164-y
  70. Wibisono, C.S., Zakaria, M.N, Soelistianto F.A., 2020. Rancang Bangun Pendeteksi Kualitas Minyak Goreng Kelapa Sawit dengan menggunakan Metode Sensor Ultrasonik dan Sensor Kapasitif Berbasis Smartphone. Jurnal Jaringan Telekomunikasi. Vol 10 (3). 140-143. E-ISSN: 2654-6531, P-ISSN: 2407-0807.
  71. Tamirys dos Santos Caramês, E., Rocha Baqueta, M., Conceição, D. A., & Azevedo Lima Pallone, J. 2020. Near infrared spectroscopy and smartphone-based imaging as fast alternatives for the evaluation of the bioactive potential of freeze-dried açai. Food Research International, 109792. doi:10.1016/j.foodres.2020.109792 10.1016/j.foodres.2020.109792
  72. Tarkosova, J., & Copikova, J. (2000). Determination of carbohydrate content in bananas during ripening and storage by near infrared spectroscopy. Journal of Near Infrared Spectroscopy. https://doi.org/10.1255/jnirs.260
  73. Utom, S.L.; Mohamad, E.J.; Ameran, H.L.M.; Kadir, H.A.; Muji, S.Z.M.; Rahim, R.A.; Pusppanathan, J. Non-Destructive Oil Palm Fresh Fruit Bunch (FFB) Grading Technique Using Optical Sensor. Int. J. Integr. Eng. 2018, 10, 35–39.
  74. Vallone, M., Alleri, M., Bono, F., Catania, P., 2019. Quality evaluation of grapes for mechanical harvest using vis NIR spectroscopy. Agric. Eng. Int. CIGR J. 21, 140–149.
  75. Yan H, Chang WX, Wen DD. 2009. Rapid determination of moisture and protein contents in silver carp surimi by fourier transform near-infrared (FT-NIR) spectrometry. Asian Fish Sci. 22: 337-355.
  76. Yan, H., & Siesler, H. W. (2018). Hand-held near-infrared spectrometers: State-of-the-art instrumentation and practical applications. NIR News, 096033601879639. doi:10.1177/0960336018796391
  77. Yu, G., Ma, B., Chen, J., Li, X., Li, Y., Li, C., 2021. Nondestructive identification of pesticide residues on the Hami melon surface using deep feature fusion by Vis/NIR spectroscopy and 1D-CNN. J. Food Process. Eng. 44, 1–12. https://doi.org/10.1111/ jfpe.13602.
  78. Yu Y, Yao M. 2022. A portable NIR system for nondestructive assessment of SSC and firmness of Nanguo pears. Food Science and technology 167 (2022)113809. https://doi.org/10.1016/j.lwt.2022.113809
  79. Zheng S, Cai X, Guo W, Zhang Z, Yang S. 2022. Differences in optical properties and internal qualities of ‘Fuji’ apple produced in different areas of the Loess Plateau region. European Journal of Agronomy 140 (2022) 126608. https://doi.org/10.1016/j.eja.2022.126608
  80. Zhu K, Aykas DP, Anderson N, Ball C, Plans M, Saona LR. 2022. Nutritional quality screening of oat groats by vibrational spectroscopy using field-portable instruments. Journal of Cereal Science 107. https://doi.org/10.1016/j.jcs.2022.103520.
  81. Zulkifli, A.B.H.Z.M.; Hashim, F.H.; Raj, T. A Rapid and Non-Destructive Technique in Determining the Ripeness of Oil Palm Fresh Fruit Bunch (FFB). J. Kejuruter. 2018, 30, 93–101.
  82. Zulmi, Q, Munawar, A.A., Zulfahrizal. 2022. Teknologi Near Infrared Reflectance Spectroscopy dan Metode Kemometri untuk Deteksi Pemalsuan Minyak Nilam. Jurnal Ilmiah Mahasiswa Pertanian. Vol 1(7): 463-469. E -ISSN : 2614-6053.