Main Article Content

Abstract

Several agricultural activities around the world emphasize the need to develop technology for cultivating plants in greenhouses that consumes low costs energy. Rainwater harvesting in areas with high rainfall is an alternative source of irrigation water for greenhouse plants. Rainwater harvesting results can be used in greenhouses as a source of fertigation water and microclimate control. Plants require an adequate amount of water on a continuous basis, and this is one of the factors that contribute to the success of greenhouse plant cultivation. The purpose of this article is to increase understanding of rainwater harvesting for irrigation systems and microclimate control in greenhouses. The results of rainwater harvesting from the rooftop greenhouse can meet 61.49-69% of the greenhouse's irrigation water needs. Microclimate reference, substrate moisture content, soil/planting media moisture content, and phyto-sensing can all be used to guide greenhouse irrigation. Rainwater harvested meets irrigation water quality criteria and can save money on irrigation costs. Furthermore, rainwater harvesting results can be used as a source of raw water for fertigation systems and microclimate control in greenhouses. Rainwater harvesting for greenhouse microclimate control can reduce temperatures by 1.3-3.6 °C and is less expensive than fan cooling systems.

Keywords

Fertigation greenhouse microclimate greenhouse irrigation rainwater harvesting cooling system

Article Details

References

  1. Alahudin M. 2013. Kondisi Termal Bangunan Greenhouse dan Screenhouse pada Fakultas Pertanian Universitas Musamus Merauke. Jurnal Ilmiah Mustek Anim Ha. 2(1):16–27.
  2. Anisum, Bintoro N, Goenadi S. 2016. Analisis Distribusi Suhu Dan Kelembaban Udara Dalam Rumah Jamur (Kumbung) Menggunakan Computational Fluid Dynamics. Agritech. 36(1):64–70.
  3. Ayers RS, Westcot DW. 1985. Water quality for agriculture. Irrigation And Drainage Paper 29 Rev. 1. Rome. Italy: Food and Agriculture Organization of the United Nations.
  4. Baille M, Baille A, Laury JC. 1994. A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Scientia Horticulturae. 59(3–4):217–232. doi:10.1016/0304-4238(94)90015-9.
  5. Beeson RC. 2011. Weighing lysimeter systems for quantifying water use and studies of controlled water stress for crops grown in low bulk density substrates. Agricultural Water Management. 98(6):967–976. doi:10.1016/j.agwat.2011.01.005.
  6. Berliandika B, Prihatmaji YP. 2016. Baciro Urban Grenhouse “Pendekatan Desain Pada Optimalisasi Pemanfaatan Cahaya Matahari Dan Penampungan Air Hujan.” Di dalam: Prosiding seminar nasional “Menuju Masyarakat Madani dan Lestari.” Yogyakarta.: Direktorat Penelitian dan Pengabdian Masyarakat, Universitas Islam Indonesia. hlm. 72–83.
  7. Boers TM, Ben-Asher J. 1982. A review of rainwater harvesting. Agricultural Water Management. 5(2):145–158. doi:10.1016/0378-3774(82)90003-8.
  8. Boyacı S, Kartal S. 2019. Rainwater Harvesting on Greenhouse Roof and Use in Irrigation. International Journal of Research -GRANTHAALAYAH. 7(2):93–100. doi:10.29121/granthaalayah.v7.i2.2019.1011.
  9. Cayuela Flores CM, González Perea R, Camacho Poyato E, Montesinos P. 2022. An ICT-based decision support system for precision irrigation management in outdoor orange and greenhouse tomato crops. Agricultural Water Management. 269(December 2021). doi:10.1016/j.agwat.2022.107686.
  10. Dorais M, Papadopoulos AP, Gosselin A. 2001. Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie. 21:367–383.
  11. Ehret D, Lau A, Bittman S, Lin W, Shelford T, Ehret D, Lau A, Bittman S, Lin W, Shelford T. 2001. Automated monitoring of greenhouse crops To cite this version : HAL Id : hal-00886117. 21(4):403–414.
  12. Ekaputra EG, Delvi Y, Deni S, Fadli I. 2016. Rancang Bangun Sistem Irigasi Tetes Untuk Budidaya Cabai (Capsicum Annum L.) Dalam Greenhouse Di Nagari Biaro, Kecamatan Ampek Angkek, Kabupaten Agam, Sumatera Barat. Jurnal Irigasi. 11(2):103–112.
  13. Fahmi MN, Yohana E, Sugiyanto. 2014. Simulasi Distribusi Suhu Dan Kelembapan Relatif Pada Rumah Tanaman (Green House) Dengan Sistem Humidifikasi. Jurnal Teknik Mesin. 2(1):41–48.
  14. Fernandes C, Corá JE, de Araújo JAC. 2003. Evapotranspiração de referência estimativa em casas de vegetação. Scientia Agricola. 60(3):591–594. doi:10.1590/S0103-90162003000300027.
  15. Incrocci L, Thompson RB, Fernandez-Fernandez MD, De Pascale S, Pardossi A, Stanghellini C, Rouphael Y, Gallardo M. 2020. Irrigation management of European greenhouse vegetable crops. Agricultural Water Management. 242(April):106393. doi:10.1016/j.agwat.2020.106393.
  16. Islam S, Lefsrud M, Adamowski J, Bissonnette B, Busgang A. 2013. Design, construction, and operation of a demonstration rainwater harvesting system for greenhouse irrigation at McGill University, Canada. HortTechnology. 23(2):220–226. doi:10.21273/horttech.23.2.220.
  17. Jovicich E, Cantliffe DJ, Stoffella PJ, Haman DZ. 2007. Bell Pepper Fruit Yield and Quality as Influenced by Solar Radiation-based Irrigation and Container Media in a Passively Ventilated Greenhouse. HortScience. 42(3):642–652.
  18. Karollita M, Koesmartadi C. 2013. Teknologi pemanenan air hujan pada perancangan arsitektur rumah tinggal Heinz Frick. Jurnal Tesa Arsitektur. 11(2):108–116.
  19. Katsoulas N, Elvanidi A, Ferentinos KP, Kacira M, Bartzanas T, Kittas C. 2016. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review. biosystems engineering. 151:374–398.
  20. Kim M, Kim S, Kim Y, Choi Y, Seo M. 2015. Infrared Estimation of Canopy Temperature as Crop Water Stress Indicator. Korean Journal of Soil Science and Fertilizer. 48(5):499–504. doi:10.7745/kjssf.2015.48.5.499.
  21. Liao R, Zhang S, Zhang X, Wang M, Wu H, Zhangzhong L. 2021. Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept. Agricultural Water Management. 245(September):106632. doi:10.1016/j.agwat.2020.106632.
  22. Libardi LGP, Rogério Teixeira de Faria, Dalri AB, Rolim G de S, Palaretti LF, Coelho AP, Martins IP. 2019. Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management. Agricultural Water Management. 212:306–316.
  23. Liopa-Tsakalidi A, Barouchas P, Salahas G. 2015. Response of Zucchini to the Electrical Conductivity of the Nutrient Solution in Hydroponic Cultivation. Agriculture and Agricultural Science Procedia. 4:459–462. doi:10.1016/j.aaspro.2015.03.053.
  24. Lizarraga A, Boesveld H, Huibers F, Robles C. 2003. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain. Irrigation and Drainage. 52(2):177–188. doi:10.1002/ird.86.
  25. Londra PA, Kotsatos IE, Theotokatos N, Theocharis AT, Dercas N. 2021. Reliability analysis of rainwater harvesting tanks for irrigation use in greenhouse agriculture. Hydrology. 8(3). doi:10.3390/HYDROLOGY8030132.
  26. Mardjuki. 1994. Pertanian Dan Masalahnya. Yogyakarta: Andi Offset.
  27. Mavrogianopoulos GN. 2016. Irrigation dose according to substrate characteristics, in hydroponic systems. Open Agriculture. 1(1):1–6. doi:10.1515/opag-2016-0001.
  28. McCartney L, Lefsrud MG. 2018. Field trials of the Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosystems Engineering. 174:159–172. doi:10.1016/j.biosystemseng.2018.07.004.
  29. Murray JD, Lea-Cox JD, Ross DS. 2004. Time domain reflectometry accurately monitors and controls irrigation water applications in soilless substrates. Acta Horticulturae. 633:75–82. doi:10.17660/ActaHortic.2004.633.8.
  30. Nasiakou A, Vavalis M, Zimeris D. 2016. Smart energy for smart irrigation. Computers and Electronics in Agriculture. 129:74–83. doi:10.1016/j.compag.2016.09.008.
  31. Nemali KS, Montesano F, Dove SK, van Iersel MW. 2007. Calibration and performance of moisture sensors in soilless substrates: ECH2O and Theta probes. Scientia Horticulturae. 112(2):227–234. doi:10.1016/j.scienta.2006.12.013.
  32. Nikolaou G, Neocleous D, Katsoulas N, Kittas C. 2017a. Effect of irrigation frequency on growth and production of a cucumber crop under soilless culture. Emirates Journal of Food and Agriculture. 29(11):863–871. doi:10.9755/ejfa.2017.v29.i11.1496.
  33. Nikolaou G, Neocleous D, Katsoulas N, Kittas C. 2017b. Modelling transpiration of soilless greenhouse cucumber and its relationship with leaf temperature in a mediterranean climate. Emirates Journal of Food and Agriculture. 29(12):911–920. doi:10.9755/ejfa.2017.v29.i12.1561.
  34. Nikolaou G, Neocleous D, Katsoulas N, Kittas C. 2019. Irrigation of greenhouse crops. Horticulturae. 5(1):1–20. doi:10.3390/horticulturae5010007.
  35. Nurfaijah, Setiawan BI, Arif C, Widodo S. 2015. Sistem Kontrol Tinggi Muka Air Untuk Budidaya Padi. Jurnal Irigasi. 10(2):97. doi:10.31028/ji.v10.i2.97-110.
  36. Nusantara EV, Ardiansah I, Bafdal N. 2021. Desain Sistem Otomatisasi Pengendalian Suhu Rumah Kaca Berbasis Web Pada Budidaya Tanaman Tomat. Jurnal Keteknikan Pertanian Tropis dan Biosistem. 9(1):34–42. doi:10.21776/ub.jkptb.2021.009.01.05.
  37. Ouammi A, Achour Y, Dagdougui H, Zejli D. 2020. Optimal operation scheduling for a smart greenhouse integrated microgrid. Energy for Sustainable Development. 58:129–137. doi:10.1016/j.esd.2020.08.001.
  38. Pardossi A, Incrocci L, Incrocci G, Malorgio F, Battista P, Bacci L, Rapi B, Marzialetti P, Hemming J, Balendonck J. 2009. Root Zone Sensors for Irrigation Management in Intensive Agriculture. Sensors. 9(4):2809–2835. doi:10.3390/s90402809.
  39. Pasaribu LS, Bafdal N, Suryadi E. 2020. Kajian Kualitas Air dan Volume Pemanenan Air Hujan Sistem Atap Pada Greenhouse Academic Leadership Grant. Prosiding Seminar Nasional …. 4(1):198–204.
  40. Pawlowski A, Sánchez-Molina JA, Guzmán JL, Rodríguez F, Dormido S. 2017. Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses. Agricultural Water Management. 183:16–25. doi:10.1016/j.agwat.2016.08.008.
  41. Prenger JJ, Ling PP, Hansen RC, Keener HM. 2005. Plant response-based irrigation in a greenhouse: System evaluation. Transactions of the ASAE. 48(3):1175–1183.
  42. Qiu R, Kang S, Du T, Tong L, Hao X, Chen R, Chen J, Li F. 2013. Effect of convection on the Penman-Monteith model estimates of transpiration of hot pepper grown in solar greenhouse. Scientia Horticulturae. 160:163–171. doi:10.1016/j.scienta.2013.05.043.
  43. Raviv M, Blom TJ. 2001. The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae. 88(4):257–276. doi:10.1016/S0304-4238(00)00239-9.
  44. Romdhonah Y, Suhardiyanto H, Erizal, Saptomo SK. 2015. Analisis Ventilasi Alamiah Pada Greenhouse Tipe Standard Peak Menggunakan Computational Fluid Dynamics. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem. 3(2):170–178.
  45. Schiattone MI, Viggiani R, Di Venere D, Sergio L, Cantore V, Todorovic M, Perniola M, Candido V. 2018. Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae. 229(October 2017):182–192. doi:10.1016/j.scienta.2017.10.036.
  46. Seethalakshmi E, Shunmugam M, Pavaiyarkarasi R, Joseph S, Edward paulraj J. 2021. An automated irrigation system for optimized greenhouse using IoT. Materials Today: Proceedings.(xxxx). doi:10.1016/j.matpr.2020.12.636.
  47. Shin JH, Son JE. 2015. Development of a real-time irrigation control system considering transpiration, substrate electrical conductivity, and drainage rate of nutrient solutions in soilless culture of paprika (Capsicum annuum L.). European Journal of Horticultural Science. 80(6):271–279. doi:10.17660/eJHS.2015/80.6.2.
  48. Siebert S, Döll P. 2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology. 384:198–217.
  49. Silber A, Xu G, Wallach R. 2003. High irrigation frequency: The effect on plant growth and on uptake of water and nutrients. Acta Horticulturae. 627(3):89–96. doi:10.17660/ActaHortic.2003.627.10.
  50. Sirait S, Maryati S. 2018. Sistem Kontrol Irigasi Sprinkler Otomatis Bertenaga Surya di Kelompok Tani Kecamatan Meureubo Kabupaten Aceh Barat. Jurnal Irigasi. 13(1):55. doi:10.31028/ji.v13.i1.55-66.
  51. Sirait S, Saptomo SK, Purwanto MYJ. 2015. Rancang Bangun Sistem Otomatisasi Irigasi Pipa Lahan Sawah Berbasis Tenaga Surya. Jurnal Irigasi. 10(1):21. doi:10.31028/ji.v10.i1.21-32.
  52. Suhardiyanto H. 2009. Teknologi Rumah Tanaman Untuk Iklim Tropika Basah: Pemodelan Dan Pengendalian Lingkungan. Bogor: IPB Press.
  53. Swaef T De, Steppe K. 2010. Linking stem diameter variations to sap flow, turgor and water potential in tomato. Functional Plant Biology. 37(5):429–438. doi:10.1071/FP09233.
  54. Vera-Repullo JA, Ruiz-Peñalver L, Jiménez-Buendía M, Rosillo JJ, Molina-Martínez JM. 2015. Software for the automatic control of irrigation using weighing-drainage lysimeters. Agricultural Water Management. 151:4–12. doi:10.1016/j.agwat.2014.10.021.
  55. Wenhua J, Jianming C, van Veenhuizen M. 2010. Efficiency and economy of a new agricultural rainwater harvesting system. Chinese Journal of Population Resources and Environment. 8(4):41–48. doi:10.1080/10042857.2010.10685002.
  56. Zuliarti A, Saptomo SK. 2021. Perancangan dan Pemanfaatan Penampung Air Hujan dengan Filtrasi Sederhana Skala Unit Perumahan Villa Citra Bantarjati. Jurnal Teknik Sipil dan Lingkungan. 6(3):159–176. doi:10.29244/jsil.6.3.159-176.